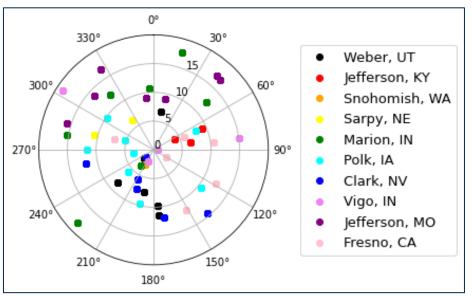


Introduction

The Environmental Protection Agency (EPA) describes PM_{2.5} as "fine inhalable particles, with diameters that are generally 2.5 micrometers and smaller" (Particulate, 2020). Between 2010-2017, over 25% of studied PM_{25} measurement sites from state agencies and PurpleAir exceeded 35 μ g/m³ of $PM_{2.5}$ by 9 p.m. local time on July 4 (Samson & Masters, 2018). 35 µg/m³ is important as it is the EPA's air quality standard (NAAQS, 2016). Despite this dramatic increase in PM_{2.5} concentration being common across numerous U.S. measurement sites on Independence Day, COVID-19 could impact this trend in 2020 as a result of municipal firework displays being cancelled or from a potential uptick in the number of residential firework displays.

Hypothesis

In 2020, fireworks will again cause spikes in $PM_{2.5}$ concentration during the evening of July 4, albeit not to the same magnitude as in 2010-2019 as COVID-19 will have caused the majority of large municipal firework shows to cancel. The magnitude of the decrease in a PM_{25} spike may vary from site-to-site due to meteorological factors, primarily wind speed and direction.


Methodology

Ten measurement sites with large average increases in $PM_{2.5}$ ($\Delta PM_{2.5}$) on July 4/5 were selected from the EPA (Fig. 1), and a list of 72 annual firework displays near those ten sites were compiled (Fig. 2). Meteorological data was then gathered from NOAA's Local Climatology Data and compared to ΔPM_{25} . Wind direction was used to determine how direct wind motion was transporting PM_{2.5} from municipal displays to measurement sites (θ). PM_{2.5} data from 2010-2019 was collected through pre-generated EPA files. However, data for 2020 was manually recorded in real-time through AirNow, a partner of the EPA, due to time constraints.

Fig. 2 The relative position of firework displays (within 20 miles of a measurement site) based on distance in miles and bearing in degrees. The origin acts as the location of the ten measurement sites.

County	Ave. $\Delta PM_{2.5} (\mu g/m^3)$
Weber, UT	491
Jefferson, KY	227
Snohomish, WA	200
Sarpy, NE	191
Marion, IN	185
Polk, IA	180
Clark, NV	161
Vigo, IN	147
Jefferson, MO	146
Fresno, CA	132

Fig. 1 The ten PM2.5 sensor locations being studied and their respective $\Delta PM_{2.5}$ between 2010-2019.

Observation of COVID-19's Impact on PM_{2.5} Concentration as a Result of Independence Day Fireworks

Braeden N Winters¹ and Perry J Samson²

¹Department of Geological and Atmospheric Sciences, Iowa State University ²Department of Climate and Space Sciences and Engineering, University of Michigan

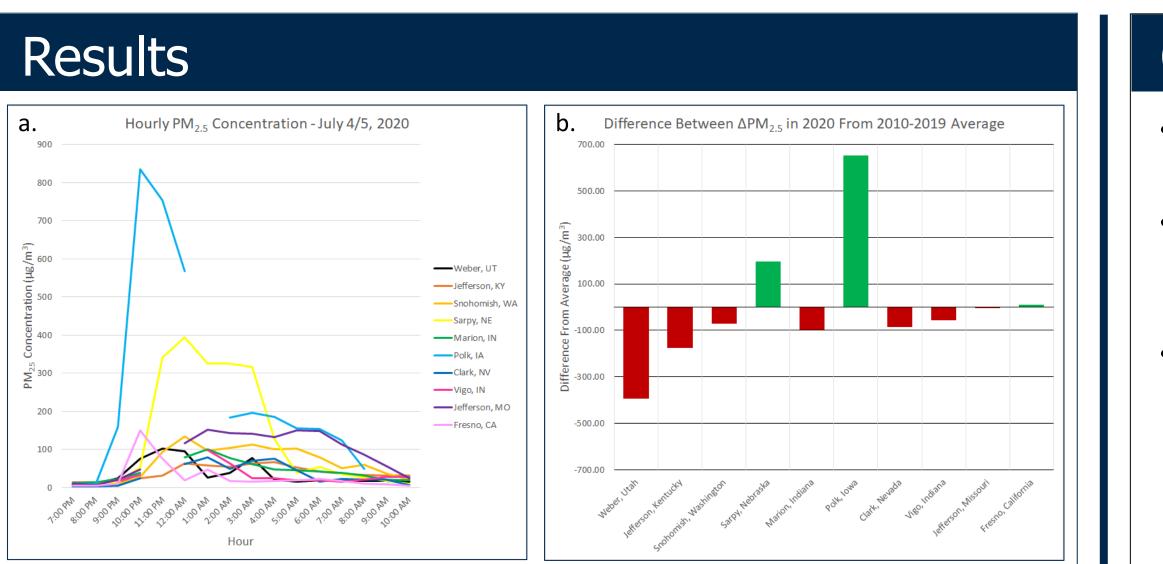


Fig. 3 (a) PM_{2.5} concentration between 7:00 PM on July 4 and noon on July 5 local time during 2020. (b) Difference between $\Delta PM_{2.5}$ in 2020 from the average $\Delta PM_{2.5}$ from 2010-2019.

In 2020, PM_{2.5} concentrations again spiked during the evening of July 4 (Fig. 3a), but $\Delta PM_{2.5}$ values differed from average. Most of the ten measurement sites experienced decreased ΔPM_{25} values from the average. However, Polk, IA and Sarpy, NE saw large increases instead (Fig. 3b). Initially, expected causes for this variability were atmospheric conditions. θ was initially believed to be the greatest factor causing $\Delta PM_{2.5}$ variability, however it, along with temperature and precipitation, exhibited no correlation with $\Delta PM_{2.5}$. Wind speed could correlate with ΔPM_{25} , but the only evidence supporting this is that none of the sites had average wind speeds above 5.5 knots during July 4 evenings. Temperature inversions are another potential cause of ΔPM_{25} variability (Pailthorp, 2020). However, locations with small $\Delta PM_{2.5}$ also tended to exhibit strong temperature inversions (Fig. 4). These findings may point to PM_{2.5} spikes being more greatly affected by collective smaller residential firework displays as opposed to large-scale municipal displays.

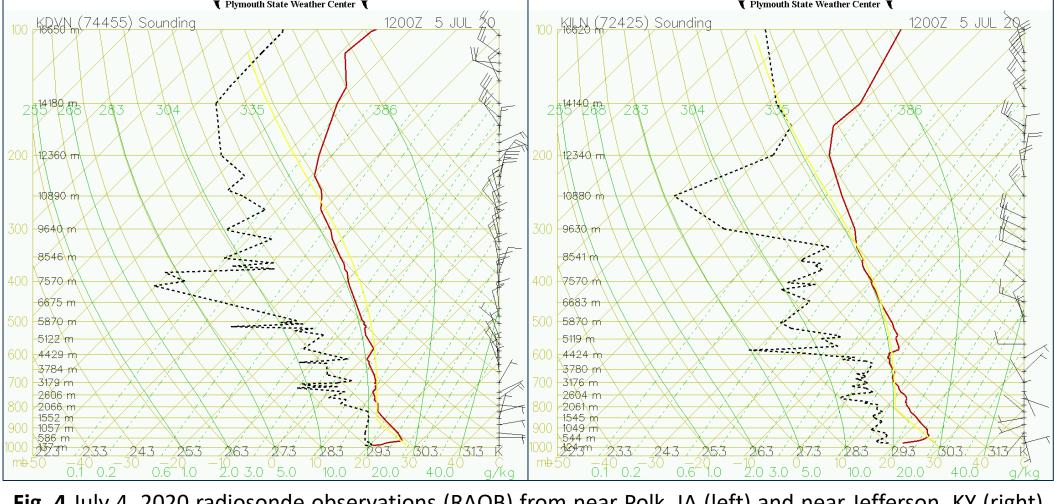


Fig. 4 July 4, 2020 radiosonde observations (RAOB) from near Polk, IA (left) and near Jefferson, KY (right) (Plymouth, n.d.). Polk, IA and Jefferson, KY had $\Delta PM_{2.5}$ of 833 and 53 μ g/m³ respectively.

References NAAQS Table. (2016, December 20). Retrieved July 12, 2020, from https://www.epa.gov/criteria-air-pollutants/naaqs-table

Pailthorp, B. (2020, July 8). July 4th air quality reached unhealthy levels in many places, despite lack of big public displays. Retrieved July 20, 2020, from https://www.knkx.org/post/july-4th-air-quality-reached-unhealthylevels-many-places-despite-lack-big-public-displays

Particulate Matter (PM2.5) Trends. (2020, June 08). Retrieved July 12, 2020, from https://www.epa.gov/air-trends/particulate-matter-pm25-trends

Plymouth State Weather Center (n.d.). RAOB Selector for Archived CONUS Data. Retrieved July 21, 2020, from https://vortex.plymouth.edu/myo/upa/raobplt-a.html

Samson, P. J. & Masters, J. (2018, January). Oh Say Can You Breathe? The Impact of Fireworks on Air Quality in the United States. In R. Ban (Chair). American Meteorological Society 98th Annual Meeting. Lecture conducted from Austin Convention Center, Austin, TX.

IOWA STATE UNIVERSITY

Conclusions

• $PM_{2.5}$ concentration dramatically increased in numerous U.S. locations during the evening of July 4 in 2020, consistent with 2010-2019.

Polk, IA and Sarpy, NE experienced dramatic increases in $\Delta PM_{2.5}$ in 2020 compared to the 2010-2019 average. All eight other measurement sites saw similar or dramatically decreasing values in $\Delta PM_{2.5}$.

• COVID-19 could have potentially caused decreased $\Delta PM_{2.5}$ values, primarily supported through the large decreases in $\Delta PM_{2.5}$ in Weber, UT and Jefferson, KY. However, this is not conclusive for the following reasons:

- \geq θ , wind speed, precipitation, temperature, and temperature inversions did not appear to explain variability in $\Delta PM_{2.5}$, yet other atmospheric conditions not observed in this study may still effect ΔPM_{25} .
- \succ Variability in $\Delta PM_{2.5}$ appears to be more an effect of collective residential firework displays and less of a result of larger scale municipal firework displays.

Acknowledgements

This project was funded through a grant from the National Science Foundation's Research Experience for Undergraduates Program (Grant Number: 1659248)